Container for a model function, cost function and Least-Squares function. And derivatives.
More...
|
| virtual MeasureType | calcModelValue (const MeasureType *parameters, MeasureType time)=0 |
| |
| virtual void | calcLSResiduals (const MeasureType *parameters, MeasureType *residuals)=0 |
| |
| virtual MeasureType | calcCostValue (const MeasureType *parameters)=0 |
| |
| virtual void | calcCostDerivative (const MeasureType *parameters, MeasureType *derivative)=0 |
| |
| virtual void | calcLSJacobian (const MeasureType *parameters, MeasureType *jacobian)=0 |
| |
|
virtual int | getNSamples () |
| |
|
virtual const MeasureType * | getInvTimes () const |
| |
|
virtual const MeasureType * | getEchoTimes () const |
| |
|
virtual const MeasureType * | getRepTimes () const |
| |
|
virtual const MeasureType * | getRelAcqTimes () const |
| |
|
virtual const MeasureType * | getSignal () const |
| |
|
virtual int | getNDims () |
| |
|
void | setNSamples (int _nSamples) |
| |
|
virtual void | setInvTimes (const MeasureType *_InvTimes) |
| |
|
virtual void | setEchoTimes (const MeasureType *_EchoTimes) |
| |
|
virtual void | setRepTimes (const MeasureType *_RepTimes) |
| |
|
virtual void | setRelAcqTimes (const MeasureType *_RelAcqTimes) |
| |
|
virtual void | setSignal (const MeasureType *_Signal) |
| |
|
virtual std::string | getNthParamName (int nthParam) |
| |
|
virtual void | disp () |
| | show me your ModelT1
|
| |
|
void | setAllPointersToNull () |
| | set all the pointers to zero
|
| |
|
| Model () |
| | constructor
|
| |
| | Model (const Model &old) |
| | copy constructor keeps only _nSamples and _nDims More...
|
| |
| virtual Model< MeasureType > * | newByCloning ()=0 |
| |
|
virtual | ~Model () |
| | do not forget about the virtual destructor, see https://stackoverflow.com/questions/461203/when-to-use-virtual-destructors
|
| |
template<typename MeasureType>
class Ox::Model< MeasureType >
Container for a model function, cost function and Least-Squares function. And derivatives.
Here model function is defined - calcModelValue(). Fitting algorithms based on optimisation need a cost function - calcCostValue(). Fitting algorithms based on least squares need a residuals calculation - calcLSResiduals(). Some fitting algorithms use derivatives, hence calcLSJacobian() and calcCostDerivative(). The member variables are pointers to c-arrays, we need to know how many samples we want to process. That's the nSamples defined in the constructor.
- Template Parameters
-